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An Innovative Computational Fluid Dynamics Solver Based 
On the Original Form of the Conservation Laws for Fluid 

Flow 

Gafar Elamin‡, Frederick Ferguson* 
Center for Aerospace Research North Carolina A&T State University 

An innovative and robust algorithm capable of solving a variety of complex fluid 
dynamic problems is developed. This so-called, Integro-Differential Scheme, (IDS) is 
designed to overcome known limitations of established schemes. The IDS implements a 
smart approach in transforming 3-D computational flowfields of fluid dynamic problems 
into their 2-D counterparts, while preserving their physical attributes. The strength of IDS 
rests on the implementation of the mean value theorem to the integral form of the 
conservation laws. This process transforms the integral equations into a finite difference 
scheme that lends itself to efficient numerical implementation. Preliminary solutions 
generated by IDS demonstrated its accuracy in terms of its ability to capture flowfield 
physics. In this paper, the results of applying the IDS to two problems; namely, the flow over 
a flat plate, and the shock/boundary layer interaction problem, are documented and 
discussed. In both cases, the results showed very good agreement with the physical 
expectation for the problem. In an effort to validate the IDS, its solution to the 
shock/boundary layer interaction problem was compared to that generated by the NASA-
GRC Conservation Element Solution Element scheme. The results obtained by IDS are 
comparable if not better than the GRC results. 

Nomenclature 
 

ρ   = Density 

u  = Velocity in the x-direction 

v  = Velocity in the y-direction 

e  = Internal energy 

E  = Total energy 

T  = Temperature 

V  = Magnitude of velocity vector 

xq   = Heat flux in the x-direction 

yq  = Heat transfer in the y-direction 

p  = Pressure 

µ   = Dynamic (absolute) viscosity 
_____________________________ 
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xxτ  = Normal stress in the x direction  

yyτ  = Normal stress in the y direction 

xyτ  = Shear stress in the y direction exerted in a plane perpendicular to x direction 

k  = Thermal conductivity 

∞ρ  = Density at freestream conditions 

∞M  = Mach Number at freestream conditions 

∞p  = Pressure at freestream conditions 

∞a  = Speed of sound at freestream conditions 

∞u  = X-component of the velocity at freestream conditions 

∞T  = Temperature at freestream conditions 

LRe  = Reynolds number based on a characteristic length, L 

Pr  = Prandtl number  

γ   =  Ratio of cp to Cv 

 

I. Introduction 
he boundary value problems involved with non-linear vertical equations of the elliptic-hyperbolic type 
governing fluid flow are as complicated as to make analytic methods virtually impossible. In addition, aerospace 

designers are currently demanding a solution to problems under conditions that cannot be duplicated with existing 
experimental facilities. Hence, the only way to obtain reasonable, complete information on fluid flows and their 
characteristics lies in computational fluid dynamics (CFD). As known, there are many well-established numerical 
schemes in the literature; they all have their strengths and weaknesses. Even though, these schemes have led to 
significant improvements in the art of CFD, they are not adequate to handle the existing demands, and they have 
many drawbacks. For instance, the efficiency and expense of running different configurations by a given CFD code 
are the main concerns of aerospace communities. In addition, the inability of the existing CFD codes to facilitate 
inexperienced users with limited training is a serious setback. The key goal, therefore, is to improve the efficiencies 
of CFD tools thus making these communities more productive. This research focuses on the development of a 
simple, robust, efficient, and accurate numerical framework that is capable of solving a variety of complex fluid 
dynamics problems and overcoming several limitations of well-established schemes. The new scheme is built with 
extensive physics considerations and has the following features: 

1. The scheme is based on a smart integration of the traditional finite volume and finite difference 
schemes and therefore guarantees the conservation properties throughout the domain by the first and the formulation 
simplicity by the latter. 

2. The integral form of the physical conservation laws is used, rather than the differential form. As such, 
the scheme has the potential to capture the realities of flow physics more efficiently. The differential form follows 
from the integral form under the additional assumption that the physical solution is smooth, an assumption that is 
difficult to realize numerically in a region of rapid change, such as a boundary layer or a shock. 

3. The scheme guarantees the numerical solution continuity, since it focuses on the flux quantity’s 
conservation, rather than manipulating the primitive flow variables. The fluxes are continuous, and primitive 
variables are not. 

4. An accurate accounting of the mass, momentums, and energy fluxes is considered within the control 
volume and through its surfaces. The mean value theorem is used to evaluate the rate of change of fluxes at the 
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center of the control volume, rather than the traditional extrapolating or interpolating of the node’s values at the 
neighboring cells in typical finite volume schemes. The extrapolating and interpolating processes are generally time-
consuming and may result in numerical smearing. 

5. A consistence averaging process is maintained in finite difference formulation; again the mean value 
theorem is used to evaluate the derivatives. In the traditional finite difference schemes, derivatives at the mesh 
points are expressed in terms of mesh values of dependent variables by using finite difference approximations. The 
accuracies of these approximations, especially those of higher order accuracies, are generally excellent as long as 
dependent variables vary slowly across a mesh interval, but may not be adequate if these variables vary too rapidly. 
Thus, in a high-gradient region, (for example), in a shock wave, accuracy may demand the use of an extremely fine 
mesh, which, in turn, may cause a prohibitively high computing cost. The rate of change of fluxes at each mesh 
point is evaluated as an average of the rates of change at the centers of the four neighboring control volumes that 
share a node. 
 

II. The Integro-Differential Scheme 
 The Integro-Differential Scheme is a smart integration of the traditional finite volume and finite 

difference schemes. It relied on the coupled behavior of discretized cells and their corresponding nodes. And the 
numerical process is conducted in two alternating fashions. A typical control volume, illustrated in Figure 1, 
describes the numerical details associated with the finite volume formulation. Similarly, numerical details associated 
with the finite difference formulation are described through the use of Figure 2. 

 
 
 

 
 
 
 

 
 
 
 
 

 

Figure 1. Finite Volume Representation 

 
Figure2. Finite Difference Representation  
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A. The Governing Equations 
When defining any numerical solution to a fluid dynamic problem, the conservation laws must be satisfied. 

As known in fluid dynamics, the conservation laws can be applied in two basic forms: the differential form and the 
integral form. However, experience has shown that when the integral form of the conservation laws is applied to 
fluid dynamics problems, high fidelity numerical solutions can be obtained. As such, the development of the 
Integro-Differential Scheme outlined in this research is based only on the integral formulation of the conservation 
laws. Mathematically, the conservation laws, namely, mass, momentum and energy, can be expressed by the 
following equations, 

 
1. Conservation of Mass 
 

∫∫∫ ∫∫ =+
∂
∂

v s

0sdVdv
t

ρρ
                    (1) 

 
In Equation (1) tv,,ρ , represent density, the volume, and time, respectively.. The symbol sd  represents the 
surface of the control volume and is given by the following vector: 
 

kdxdyjdxdzidydzsd ++=                  (2) 
 

Also, the vector V  represents fluid velocity and can be expressed as 
 

kwjviuV ++=                       (3) 
 

2. Conservation of Momentum 
 

( ) sdsPdVsdVdvV
t

ssv
∫∫∫∫∫∫∫∫∫ +−=+

∂
∂ τρρ ˆ.             (4) 

 
where P is the pressure and the symbol, ,τ̂  represents a tensor that defines the various components of the local 
viscous stresses. This tensor can be described by the following equation: 
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where, the symbols zyzxyxyyxyxx ττττττ ,,,,, and zzτ  are the local shear stress components. 
 

3. Conservation of Energy 
 

  ∫∫∫∫∫∫∫∫∫∫∫ ++−=+
∂
∂

ssssv

sdqsdVsdVPsdVEEdv
t

&.ˆ.. τρρ              (6) 
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The vector q&  represents the rate of heat conducted per unit area through the surface of the control volume. In 
general, the vector q&  can be rewritten in coordinate form such that  
 

kqjqiqq zyxvis &&&& ++=                       (7) 
 

where ,, yx qq && and zq&  represent the rate of heat conducted per unit area in x ,y, and z,  respectively. As stated in 
the literature, the thermal conduction is proportional to the temperature gradient. Mathematically, this relation can 
expressed as,  
 

x
Tkqx ∂

∂−=&                          (8) 

 

y
Tkqy ∂

∂−=&                          (9) 

 

z
Tkqz ∂

∂−=&                          (10) 

 
where k is the thermal conductivity, and the minus sign accounts for the fact that the heat is transferred in the 
opposite direction of the temperature gradient. 
 
In equation (6) E represents the total energy per unit mass is the summation of the internal energy e, and the kinetic 
energy. 
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B. The Integro-Differential Scheme Implementation 
The numerical process of this scheme consists of the following steps: 

1. The governing equations were employed on each small control volume to formulate their finite difference 
form. This task is accomplished by applying the mean value theorem to the integral form of the equations 
to evaluate the rate of change of mass, momentum, and energy at the center of each control volume. 

2. The average value of the rate of change of mass, momentum, and energy for each four neighbor cells is 
calculated, which represents the rates of change at the center node of those cells. 

3. Taylor’s series expansion is employed to update the solution at the centered node. 
 

III. Results 
 
A. The Supersonic flow over a Flat Plate Problem 

The supersonic flow over a flat plate is a classical fluid dynamic problem, and it has received considerable 
attention from many researchers, However, it has no exact analytical solution. Even though it can be claimed 
that some traditional techniques can solve this problem, the results obtained from these techniques are 
reasonably good for certain applications. Their approximate nature is extremely limiting in terms of flight 
condition and geometry. The innovative CFD solver was employed to solve this problem. As in Figures 3 
through 6, the results showed very good agreement with the physical expectation of viscous flow over a flat 
plate. 
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Figure 3. u Component of the Velocity Distribution 
 

Figure4. Temperature Distribution 

 
 

 

  

Figure 5. u Component of the Velocity Profile 
 

Figure 6. Temperature Profile 
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B. The Shock/Boundary Layer Interaction Problem 

The shock/boundary layer interaction phenomenon is of considerable importance from both theoretical and 
practical points of view. This phenomenon has a large impact on the design of hypersonic vehicles for the presence 
of extended recirculation regions, intense local heating, and a loss of efficiency of the aerodynamic control surfaces. 

The complexity of the phenomenon and its importance in the design of a hypersonic vehicle requires an 
understanding of the controlling effects and their characterization. In the last few decades, studies dealt with the 
shock wave/boundary layer interaction problem, mainly from an experimental point of view. More recently, 
numerical investigations of this problem have also been possible due to the massive increase in computer 
capabilities. Moreover, this problem has become a benchmark of testing new numerical methods. The innovative 
solver is employed to solve this problem. In an effort to validate the results, the same problem was solved using the 
NASA-GRC second order conservation element-solution element scheme. Figures 7 through 8 depicted a 
comparison between the results obtained by the new innovation and the NASA-GRC second order scheme results.  

 

 

 

 

 
 
 
 
 

 
 
 

(a) The Innovative Scheme Solution 
 

(b) NASA-GRC Scheme Solution 
 

Figure 7. The Normal Component of the Velocity Distribution 
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(a) The Innovative Scheme Solution 
 

(b) NASA- GRC Scheme Solution 
 

Figure 8. The Pressure Distribution 
  

IV. Conclusion 
A new numerical scheme for solving equations that govern fluid dynamics problems was developed. The 

innovation is called the integro-differential scheme. The scheme name depicts exactly what it says by combining the 
integral form of the conservation laws to formulate the governing equations and transforming them in a suitable 
differential form for the finite difference representation. The concept of the control volume was considered when 
calculating the integrations and the finite difference held for the numerical implementation of the scheme.. 
Moreover, the scheme was built on a very simple and strong mathematical foundation with extensive physics 
considerations. These considerations solidified the belief that the scheme is robust, efficient, and capable of solving 
a variety of complex fluid dynamics problems 

In the stage of the scheme development, an unsteady, compressible, viscous flow over a flat plate problem was 
considered. The Integro-Differential Scheme was implemented using FORTRAN as a programming language and 
the solution results were visualized using the TECPLOT application. The results showed very good agreement with 
the physical expectation of viscous flow over a flat plate. Because the shock/boundary layer interaction problem has 
become a benchmarck to test new numerical methods for viscous flow since MaxCormack’s work of 1971, the new 
scheme was employed to solve it. The results of this problem were obtained and visualized using TECPLOT. As a 
validation, the same problem was solved using the NASA-GRC second order conservation element-solution element 
scheme. The TECPLOT visual comparsion for the shock/boundary layer interaction problem showed that the 
integro-differential scheme results are comparable if not better than the NASA-GRC second order scheme results. 
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